

LA-UR-19-26204

Approved for public release; distribution is unlimited.

Title: InSight, 3D modeling CTX impact

Author(s): Larmat, Carene

Maguire, Ross Karakostas, Foivos Rolland, Lucie

Intended for: Insight Impact Working Group

Issued: 2019-07-01

C. Larmat, R. Maguire, L. Rolland, F. Karakostas

- Introduction
- Model
 - Surface topography
 - Vertical model
- Results
 - Acoustic/elastic modeling with a resolution of 3s
 - Seismic only with a resolution of 0.5s (2Hz)

- Previous modelings:
 - Karakostas et al., 2018
 - Daubar et al., 2018
 - Garcia et al., 2017
- SPECFEM3D (Komatitsch et al., 1999, 2002): spectral element method, elastic, acoustic and poro-elastic modeling, gravity, GPU-accelerated, anisotropy.

Amplitude at 5km of impact. Impact of meteorite of 2, 1 and 0.5m of diameter respectively.

MOLA DEM 463m HRSC DEM 100m (Golombek et al., 2016)

distance km

Model EH45Tcoldcrust1rq (Rivoldini et al. 2011).

- Regolith layer of 80m with the shallowest 20m with Vp=265m/s and Vs=150m/s
- Subsequent layer of 1km with Vp = 2700m/s and Vs 1500m/s
- Subsequent layer with a slow gradient.

Seismic acoustic model

Total elastic elements: 4.7M Total acoustic elements: 4.7M

Element size between 250m and 500m
Minimum period resolved 3s

432 processors; 4hrs to compute 140s of signal

Difference source in the acoustic and elastic domain

Vertical component modeled at Insight with a seismic source of Mw=-1.76. In black, the source was into the ground mimicking a perfect coupling into the ground, in blue the source was in the atmosphere, mimicking a "partial" coupling. On the left, waveform at the ground level. On the right, waveforms in the acoustic domain. Notice the difference of amplitude on the acoustic wave.

Higher resolution – seismic modeling only

Total elastic elements: 51M

Total acoustic elements: 0M

Element size between 25 and 500m (doubling): Minimum period resolved 0.5s

4608 processors; 16hrs to compute 140s of signal

Benchmarking with AXISEM

- Working on benchmarking between SPECFEM3D and AXISEM.
- Need hypothesis, data on the thickness of the regolith layer.

- Working on benchmarking between SPECFEM3D and AXISEM.
- Need hypothesis, data on the thickness of the regolith layer.
- Need to develop a 3D model of scattering.